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Extended Abstract

Modeling of roughness-dominated transition is a critical design issue for both

ablating and non-ablating thermal protection systems (TPS). Ablating TPS, used for

planetary-entry and earth-return missions, first experience recession under high-altitude,

low-Reynolds-number conditions. Such laminar-flow ablation causes the formation of a

surface microroughness pattern characteristic of the TPS material composition and

fabrication process. For non-ablating TPS, such as the overlapping-tile, metallic

heatshields proposed for future reusable launch vehicles, the surface roughness pattern is

established apriori by the engineering design and assembly procedure.

In both cases, these distributed surface roughness patterns create disturbances

within, and alter the mean velocity prof'de of, the laminar boundary layer flowing over

the surface. As altitude decreases, Reynolds number increases, and flow field conditions

capable of amplifying these roughness-induced perturbations are eventually achieved,

i.e., transition onset occurs. Boundary layer transition to turbulence results in more

severe heat-transfer rates. Ablating TPS experience increased recession rates, leading to

potential burn-through, while non-ablating TPS experience accelerated temperature rise,

leading to potential melting of key components.

Early experimental research on roughness-dominated transition, primarily due to

isolated roughness elements, and the evolution of the critical roughness Reynolds number

concept, are documented in References 1-7 and supporting references given therein. For

isolated (single) roughness elements, breakdown to turbulence was generally first

observed downstream of the element, but with small additional increases in free_tream

Reynolds number, the turbulent wedge would "flash forward" and become "attached" to

the element. The trip was then defined as "effective." Such observations led to the

terminology "critical roughness Reynolds number" for transition, the value of which

depended on roughness element shape, type (2D or 3D) and flow field, e.g.,

incompressible/flat-plate. No universal value was discovered.

For 3D distributed roughness covering the entire test surface, the term "effective

tripping" was replaced by critical roughness Reynolds number for the "onset" of

turbulence. "Effective" and "onset" roughness Reynolds numbers for transition are
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basedon theroughnesselementheightandconditionsin the laminarboundarylayer at
that height. An alternativeapproachis to basethecritical Reynoldsnumberon
roughnesselementheightandboundarylayeredgeconditions.

By themid 1970's,cold-warconcernshadgeneratedextremeinterestin transition
physicsonablatingnosetipsof ballistic re-entryvehicles.8'9A substantialnew database
for roughness-dominatedtransitiononblunt bodiesin hypersonicflow wasgeneratedin
wind-tunnelenvironments._°At leastfive separatecorrelationswerepublishedclaiming
to correctlymodel thephysicsof transitiononsetandprogressionover thenosetip(see
review of Reference11). Ballistics-rangeexperiments,usingpreablatednosetipsof
actualreentrymaterials,weresubsequentlyconductedby Reda.w_Analysesof this
extensive"real-materials/real-environments"databaseshowedthatonly onetransition
correlation,basedon theconceptof a critical roughnessReynoldsnumberfor transition,
could successfullydescribeboth thewind-tunnelandballistics-rangedatasets,thus
validatingtheapplicationof thisconceptto actualreentryconditions.

Thecontentof this proposedpaper is based on the author's review of these

ballistics-range experiments and on the author's review and re-analyses of roughness-

dominated transition data sets published since that time. In all of these more-recent

cases, graphical or algebraic representations of the data were used to correlate the results.

Based on present analyses, it will be shown that: (1) all of these more-recent data sets can

be successfully correlated by the critical roughness Reynolds number approach; (2)

similar flow fields, e.g., attachment lines on swept cylinders and attachment lines on

windward surfaces of lifting-entry configurations, yield essentially the same value for the

critical roughness Reynolds number; and (3) that the critical roughness Reynolds number

for 3D _ roughness elements can be an order of ma_tude lower than the

critical value for 3D isolated roughness elements. Results to substantiate these
conclusions are summarized below.

Figure 1, taken from Reference 11, shows a schematic of the generalized

correlation approach applied to the hypersonic wind-tunnel data base of Reference 10.

Power-law relationships between the assumed disturbance parameter X (always based on

the average surface roughness height) and the assumed transition parameter Y_ (always

based on the computed, smooth-wall laminar boundary layer) were sought. In log-log

coordinates, a correlation fit with a -45 degree slope (n= -1) represented a unique

situation where Yrs X = a= constant.

Figure 2 shows a summary of the ballistics-range data set _ for five different

materials and three different nosetip radii exposed to quiescent, real-gas environments.

This 3D, distributed-roughness data set was well represented by a critical roughness

Reynolds number (based on conditions at the roughness height and the wall temperature)

of 192. The value of this parameter for the 3D, distributed-roughness, wind-tunnel data

set _° was slightly lower (160), most probably due to additional disturbances imposed on

the laminar boundary layer from nozzle-wall radiated noise.



Demetriades,_: in hisstudiesof theeffectsof distributedroughnesson transition

in a nozzle throat, found corroborating results to support the concept of a constant

roughness Reynolds number for transition (-200) in the roughness-dominated regime.

Bertin, Hayden and Goodrich _3found essentially the same result (180) for 3D, distributed

roughness patterns on the windward surface of a Shuttle Orbiter model at hypersonic

Mach numbers. When cast in terms of boundary layer edge conditions (Figure 3), the

ballistics-range data set _ was well described by a critical roughness Reynolds number of
106.

The influence of isolated roughness elements on swept-cylinder, attachment-line

boundary layer transition was studied by Poll _4'_5and Flynn and Jones. _6 Although these

experiments were conducted in incompressible flows, results are relevant to attachment-

line transition physics for lifting entry vehicles. While these authors acknowledged the

roughness-Reynolds-number correlating approach, transition results were graphically

presented in terms of Poll's disturbance parameter k/rl (roughness height non-

dimensionalized by a computed length scale dependent on the velocity gradient normal to

the attachment line), and transition parameter R (a Reynolds number based on edge

conditions and the same computed length scale). Plotting these data sets in log-log

coordinates (Figures 4 and 5) showed the inverse dependence of the transition parameter

on the disturbance parameter. The end result is that the computed length scale cancels

out, yielding a constant critical roughness Reynolds number (based on roughness height

and boundary layer edge conditions) of 800 for 2D isolated elements and 1000 for 3D
isolated elements.

The influence of isolated roughness elements on boundary layer transition for

hypersonic flows over lifting-entry configurations at high angles-of-attack was recently

studied by Berry, et al_7.rs at NASA Langley. The critical-roughness-Reynolds-number

correlating approach was not employed. Rather _ an algebraic correlation was given

between the postulated disturbance parameter k/8 (roughness height non-dimensionalized

by laminar boundary layer thickness) and the postulated transition parameter Reo/M_

(edge Reynolds number, based on laminar boundary layer momentum thickness, divided

by edge Mach number). The Shuttle Orbiter windward ceterline data 'v are shown re-

plotted in log-log coordinates in Figure 6, while X-33 windward centerline data _s and

attachment-line data n are similarly re-plotted in Figures 7 and 8, respectively. Given the

inverse dependence between the transition and disturbance parameters, coupled with the

facts that M,~2 for such high-angle-of-attack flow fields and (8/0) for laminar boundary

layers is -7.5, it can be directly shown that the critical roughness Reynolds number for

transition, for 3D isolated roughness elements on this class of vehicles, is order 500 to

1000. Comparing the results of Figures 5 and 8 shows that critical roughness Reynolds

numbers for 3D isolated elements are essentially the same (~ 1000) for incompressible

and compressible attachment-line flows when based on boundary layer edge conditions.

Further, comparing the results of Figures 3 and 7 shows that the critical roughness

Reynolds number for transition due to 3D distributed roughness elements (~ 100) can be

an order of magnitude lower than the corresponding value for 3D isolated roughness

elements (- 1000).



This latter observation is of more than scientific interest. The X-33 flight-test

vehicle _9was designed, and the single-stage-to-orbit reusable launch vehicle

VentureStar 2° was defined, based on the isolated roughness element results of Figures 7

and 8. For both vehicles, the thermal protection system is comprised of overlapping,

sharp-cornered, metallic panels yielding a periodic distributed array of "steps" with edges

skewed to local flow directions (see Figure 1 of Reference 21). Hama _2"2Jfound that

triangular plan-form, flow-aligned, roughness elements were most efficient at tripping

both incompressible and compressible boundary layers to turbulence. To complicate

matters further, these metallic panels "bow" or warp under re-entry heating. 2' The

aerothermodynamic survivability of such metallic heat shield concepts remains to be

proven.
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Figure 1. Generalized Correlation Approach
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